## Define function that recodes to numeric, but watches out to coercion to not introduce NAs
<- function(df){
colstonumeric tryCatch({
<- as.data.frame(
df_num lapply(df,
function(x) { as.numeric(as.character(x))}))
warning = function(stop_on_warning) {
},message("Stoped the execution of numeric conversion: ", conditionMessage(stop_on_warning))
})
}##
## Define function that reverse codes items
<- function(df, tonumeric = FALSE, min = NULL, max = NULL) {
ReverseCode if(tonumeric) df <- colstonumeric(df)
<- (max + min) - df
df
}##
## Define function that scores only rows with less than 10% NAs (returns NA if all or above threshold percentage of rows are NA); can reverse code if vector of column indexes and min, max are provided.
<- function(df, napercent = .1, tonumeric = FALSE, reversecols = NULL, min = NULL, max = NULL) {
ScoreLikert <- list(reversecols = reversecols, min = min, max = max)
reverse_list <- !sapply(reverse_list, is.null)
reverse_check
# Recode to numeric, but watch out to coercion to not introduce NAs
<- function(df){
colstonumeric tryCatch({
<- as.data.frame(
df_num lapply(df,
function(x) { as.numeric(as.character(x))}))
warning = function(stop_on_warning) {
},message("Stoped the execution of numeric conversion: ", conditionMessage(stop_on_warning))
})
}
if(tonumeric) df <- colstonumeric(df)
if(all(reverse_check)){
<- (max + min) - df[ ,reversecols]
df[ ,reversecols] else if(any(reverse_check)){
}stop("Insuficient info for reversing. Please provide: ", paste(names(reverse_list)[!reverse_check], collapse = ", "))
}
ifelse(rowSums(is.na(df)) > ncol(df) * napercent,
NA,
rowSums(df, na.rm = TRUE) * NA ^ (rowSums(!is.na(df)) == 0)
)
}##
<- function(data, title, x, y, outlier.label, xlab, ylab) {
my_ggwithinstats <- rlang::enquo(x)
x <- rlang::enquo(y)
y <- rlang::enquo(outlier.label)
outlier.label
%>%
data ::ggwithinstats(
ggstatsplotx = !!x,
y = !!y,
title = title,
xlab = xlab,
ylab = ylab,
outlier.tagging = TRUE, # whether outliers need to be tagged
outlier.label = !!outlier.label, # variable to be used for tagging outliers
outlier.coef = 2,
pairwise.comparisons = TRUE,
pairwise.display = "significant",
results.subtitle = TRUE,
type = "parametric",
bf.message = FALSE,
p.adjust.method = "none",
point.path = TRUE,
ggtheme = ggprism::theme_prism(),
# package = "RColorBrewer", # "ggsci",
# palette = "Dark", # "default_jco",
violin.args = list(width = 0.9, alpha = 0.2, size = 1, color = "black"),
centrality.point.args = list(size = 5, color = "darkred"),
centrality.label.args = list(size = 3, nudge_x = 0.2, segment.linetype = 5, fill = "#FFF8E7"),
ggplot.component = list(
theme(
plot.title = element_text(hjust = 0, size = 16),
plot.subtitle = element_text(hjust = 0, size = 12),
plot.caption = element_text(hjust = 0, size = 12),
text = element_text(size = 14)
))+ scale_colour_grey(start = 0.2, end = 0.2) # hacky way to change point color
)
}
# For publication
<- function(data, title, x, y, outlier.label, xlab, ylab,
my_ggwithinstats2 outlier.tagging = FALSE, results.subtitle = TRUE,
centrality.label.args = TRUE, point.path = TRUE,
type = "parametric",
# ... for limits and breaks
...) { <- rlang::enquo(x)
x <- rlang::enquo(y)
y <- rlang::enquo(outlier.label)
outlier.label
if(centrality.label.args){
<- list(size = 3, nudge_x = 0.2, segment.linetype = 5, fill = "#FFF8E7")
centrality.label.args else{
}<- list(size = 0, nudge_x = 10, segment.linetype = 0, alpha = 0) # very hacky way of not showing label
centrality.label.args
}
%>%
data ::ggwithinstats(
ggstatsplotx = !!x,
y = !!y,
title = title,
xlab = xlab,
ylab = ylab,
outlier.tagging = outlier.tagging, # whether outlines need to be tagged
outlier.label = !!outlier.label, # variable to be used for tagging outliers
outlier.coef = 2,
pairwise.comparisons = TRUE,
pairwise.display = "all",
results.subtitle = results.subtitle,
type = type,
bf.message = FALSE,
p.adjust.method = "none",
point.path = point.path,
ggtheme = ggprism::theme_prism(),
# package = "RColorBrewer", # "ggsci",
# palette = "Dark", # "default_jco",
violin.args = list(width = 0.9, alpha = 0.2, size = 1, color = "black"),
centrality.plotting = TRUE,
centrality.type = "parameteric",
centrality.point.args = list(size = 5, color = "darkred"),
centrality.label.args = centrality.label.args,
ggplot.component = list(
theme(
plot.title = element_text(hjust = 0, size = 16),
plot.subtitle = element_text(hjust = 0, size = 12),
plot.caption = element_text(hjust = 0, size = 12),
text = element_text(size = 14)
))+ scale_colour_grey(start = 0.2, end = 0.2) + # hacky way to change point color
) scale_y_continuous(...)
}
# Fast ggsave - saves plot with filename of R plot object
<- function(plot, device = "png", path = NULL,
fast_ggsave units = "in", dpi = 300, width = 5, height = 5, ...){
<- deparse(substitute(plot))
plot_name ::ggsave(filename = paste0(plot_name, ".", device), plot = plot,
ggplot2device = device, path = path,
units = units, dpi = dpi,
width = width, height = height,
...
)
# use: fast_ggsave(jrad_ox_p, path = savefolder) }
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Read, Clean, Recode, Unite
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
## Read files
<- "C:/Users/Mihai/Desktop/R Notebooks/notebooks/PA4-full-report"
folder <- "Scale complete triate Sofi pa4.xlsx"
file
setwd(folder)
## ID df
<- rio::import(file.path(folder, file),
id_df skip = 0, colNames = FALSE, which = "incadrari")
<- id_df[, 1:4]
id_df colnames(id_df) <- c("Grup", "Cond", "id", "email")
<-
id_df %>%
id_df ::remove_empty("rows") %>%
janitor::mutate(id = stringr::str_remove(id, "^0+"), # remove leading zeros
dplyrid = stringr::str_remove_all(id, "[[:blank:]]"), # remove any white space
id = toupper(id)) %>%
::mutate(Cond = stringr::str_replace(Cond, "12CONTROL", "CONTROL"), # fix typo
dplyrGrup = stringr::str_replace(Grup, "burnout", "Burnout"),
Grup = stringr::str_replace(Grup, "pop generala", "pop gen"),
Grup = stringr::str_replace(Grup, "old", "pop gen")) %>%
::mutate(Grup = dplyr::if_else(is.na(Grup), "pop gen", Grup))
dplyr
<-
id_df %>%
id_df ::separate(id,
tidyrinto = c("id_num", "Exp_type"),
sep = "(?<=[0-9])(?=[A-Za-z])", # ?<= is "look behind"
remove = FALSE
%>%
) ::select(-id_num) %>%
dplyr::mutate(Exp_type = dplyr::if_else(Exp_type %in% c("A", "B", "C", "D", "E", "R", "X"), "online", Exp_type))
dplyr
## Scale
<- rio::import(file.path(folder, file),
scale_df_pre skip = 0, which = "Scale zi1")
<- rio::import(file.path(folder, file),
scale_df_post skip = 0, which = "Scale zi5")
<- which(colnames(scale_df_pre) == setdiff(colnames(scale_df_pre), colnames(scale_df_post)))
dif_col <- scale_df_pre[, - dif_col]
scale_df_pre <- scale_df_pre[, - c(1, 3:7)]
scale_df_pre <- scale_df_post[, - c(1, 3:7)]
scale_df_post identical(colnames(scale_df_pre), colnames(scale_df_post))
<- scale_df_pre[-1, ]
scale_df_pre colnames(scale_df_pre)[1] <- "Date"
colnames(scale_df_pre)[2] <- "id"
<-
scale_df_pre %>%
scale_df_pre ::remove_empty("rows") %>% # remove empty rows if any
janitor::mutate(id = stringr::str_remove(id, "^0+"), # remove leading zeros
dplyrid = stringr::str_remove_all(id, "[[:blank:]]"), # remove any white space
id = toupper(id)) %>%
::mutate_if(is.character, ~dplyr::na_if(., "Not Answered")) %>%
dplyr::mutate(Date = lubridate::as_datetime(Date)) %>%
dplyr::arrange(Date)
dplyr
<- scale_df_post[-1, ]
scale_df_post colnames(scale_df_post)[1] <- "Date"
colnames(scale_df_post)[2] <- "id"
<-
scale_df_post %>%
scale_df_post ::remove_empty("rows") %>% # remove empty rows if any
janitor::mutate(id = stringr::str_remove(id, "^0+"), # remove leading zeros
dplyrid = stringr::str_remove_all(id, "[[:blank:]]"), # remove any white space
id = toupper(id)) %>%
::mutate_if(is.character, ~dplyr::na_if(., "Not Answered")) %>%
dplyr::mutate(Date = lubridate::as_datetime(Date)) %>%
dplyr::arrange(Date)
dplyr
setdiff(id_df$id, scale_df_pre$id)
# Merge with id
<- dplyr::left_join(scale_df_pre, id_df, by = "id")
scale_df_pre $PrePost <- rep("Pre", nrow(scale_df_pre))
scale_df_preunique(scale_df_pre$Cond)
unique(scale_df_pre$Grup)
table(scale_df_pre$Cond, scale_df_pre$Grup)
c("id", "Cond", "Grup")] scale_df_pre[,
<- dplyr::left_join(scale_df_post, id_df, by = "id")
scale_df_post $PrePost <- rep("Post", nrow(scale_df_post))
scale_df_postunique(scale_df_post$Cond)
unique(scale_df_post$Grup)
c("id", "Cond", "Grup")] scale_df_post[,
NA
<-
gender_match c("Sex", "ID")] %>%
Data[, mutate_if(is.character, ~na_if(., "Not Answered"))
<-
fem_ids %>%
gender_match ::filter(Sex == "Feminin") %>%
dplyr::pull(ID)
dplyr
<-
masc_ids %>%
gender_match ::filter(Sex == "Masculin") %>%
dplyr::pull(ID) dplyr
–>
–>
## PANAS: Positive Affect Score = sum items 1, 3, 5, 9, 10, 12, 14, 16, 17, 19. Negative Affect Score = sum items 2, 4, 6, 7, 8, 11, 13, 15, 18, 20.
<- 3:22
index_item_panas colnames(scale_df_pre)[index_item_panas] <- sprintf("PANAS_%d", 1:20)
colnames(scale_df_post)[index_item_panas] <- sprintf("PANAS_%d", 1:20)
<- data.frame(lapply(scale_df_pre[, index_item_panas],
scale_df_pre[, index_item_panas] function(x) {gsub(".*în foarte mică măsură.*", "1", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_panas],
scale_df_pre[, index_item_panas] function(x) {gsub(".*în mică măsură.*", "2", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_panas],
scale_df_pre[, index_item_panas] function(x) {gsub(".*într-o oarecare măsură.*", "3", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_panas],
scale_df_pre[, index_item_panas] function(x) {gsub(".*în mare măsură.*", "4", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_panas],
scale_df_pre[, index_item_panas] function(x) {gsub(".*în foarte mare măsură.*", "5", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_panas],
scale_df_post[, index_item_panas] function(x) {gsub(".*în foarte mică măsură.*", "1", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_panas],
scale_df_post[, index_item_panas] function(x) {gsub(".*în mică măsură.*", "2", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_panas],
scale_df_post[, index_item_panas] function(x) {gsub(".*într-o oarecare măsură.*", "3", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_panas],
scale_df_post[, index_item_panas] function(x) {gsub(".*în mare măsură.*", "4", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_panas],
scale_df_post[, index_item_panas] function(x) {gsub(".*în foarte mare măsură.*", "5", x)}), stringsAsFactors = FALSE)
# Scoring
$PA_Total <- ScoreLikert(scale_df_pre[, index_item_panas][c(1, 3, 5, 9, 10, 12, 14, 16, 17, 19)],
scale_df_pretonumeric = TRUE, napercent = .11) # not more than 1 NAs for 10 items
$NA_Total <- ScoreLikert(scale_df_pre[, index_item_panas][c(2, 4, 6, 7, 8, 11, 13, 15, 18, 20)],
scale_df_pretonumeric = TRUE, napercent = .11) # not more than 1 NAs for 10 items
$PA_Total <- ScoreLikert(scale_df_post[, index_item_panas][c(1, 3, 5, 9, 10, 12, 14, 16, 17, 19)],
scale_df_posttonumeric = TRUE, napercent = .11) # not more than 1 NAs for 10 items
$NA_Total <- ScoreLikert(scale_df_post[, index_item_panas][c(2, 4, 6, 7, 8, 11, 13, 15, 18, 20)],
scale_df_posttonumeric = TRUE, napercent = .11) # not more than 1 NAs for 10 items
## PSS-SF 14 (likert 0-4). Items 4, 5, 6, 7, 9, 10, and 13 are scored in reverse direction.
<- 23:36
index_item_pss <- c(4, 5, 6, 7, 9, 10, 13)
index_item_revPSS colnames(scale_df_pre)[index_item_pss] <- sprintf("PSS_%d", 1:14)
colnames(scale_df_post)[index_item_pss] <- sprintf("PSS_%d", 1:14)
<- data.frame(lapply(scale_df_pre[, index_item_pss],
scale_df_pre[, index_item_pss] function(x) {gsub(".*niciodată.*", "0", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_pss],
scale_df_pre[, index_item_pss] function(x) {gsub(".*aproape niciodată.*", "1", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_pss],
scale_df_pre[, index_item_pss] function(x) {gsub(".*uneori.*", "2", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_pss],
scale_df_pre[, index_item_pss] function(x) {gsub(".*destul de des.*", "3", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_pre[, index_item_pss],
scale_df_pre[, index_item_pss] function(x) {gsub(".*foarte des.*", "4", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_pss],
scale_df_post[, index_item_pss] function(x) {gsub(".*niciodată.*", "0", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_pss],
scale_df_post[, index_item_pss] function(x) {gsub(".*aproape niciodată.*", "1", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_pss],
scale_df_post[, index_item_pss] function(x) {gsub(".*uneori.*", "2", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_pss],
scale_df_post[, index_item_pss] function(x) {gsub(".*destul de des.*", "3", x)}), stringsAsFactors = FALSE)
<- data.frame(lapply(scale_df_post[, index_item_pss],
scale_df_post[, index_item_pss] function(x) {gsub(".*foarte des.*", "4", x)}), stringsAsFactors = FALSE)
# Score
<- colstonumeric(scale_df_pre[, index_item_pss])
scale_df_pre[, index_item_pss] <- colstonumeric(scale_df_post[, index_item_pss])
scale_df_post[, index_item_pss]
<- ReverseCode(scale_df_pre[, index_item_pss][index_item_revPSS], tonumeric = FALSE, min = 0, max = 4)
scale_df_pre[, index_item_pss][index_item_revPSS] <- ReverseCode(scale_df_post[, index_item_pss][index_item_revPSS], tonumeric = FALSE, min = 0, max = 4)
scale_df_post[, index_item_pss][index_item_revPSS]
$PSS_Total <- ScoreLikert(scale_df_pre[, index_item_pss], napercent = .11)
scale_df_pre$PSS_Total <- ScoreLikert(scale_df_post[, index_item_pss], napercent = .11)
scale_df_post
# PS int (Pro social scales - 37:47)
<- 37:40
index_item_PSint colnames(scale_df_pre)[index_item_PSint] <- sprintf("PSint_%d", 1:4)
colnames(scale_df_post)[index_item_PSint] <- sprintf("PSint_%d", 1:4)
sprintf("PSint_%d", 1:4)] <-
scale_df_pre[, sprintf("PSint_%d", 1:4)] %>%
scale_df_pre[, ::mutate_all(readr::parse_number)
dplyr
sprintf("PSint_%d", 1:4)] <-
scale_df_post[, sprintf("PSint_%d", 1:4)] %>%
scale_df_post[, ::mutate_all(readr::parse_number)
dplyr
$PSint_Total <- ScoreLikert(scale_df_pre[, index_item_PSint], tonumeric = TRUE, napercent = .33)
scale_df_pre$PSint_Total <- ScoreLikert(scale_df_post[, index_item_PSint], tonumeric = TRUE, napercent = .33)
scale_df_post
# PS mot
<- 41:44
index_item_PSmot colnames(scale_df_pre)[index_item_PSmot] <- sprintf("PSmot_%d", 1:4)
colnames(scale_df_post)[index_item_PSmot] <- sprintf("PSmot_%d", 1:4)
sprintf("PSmot_%d", 1:4)] <-
scale_df_pre[, sprintf("PSmot_%d", 1:4)] %>%
scale_df_pre[, ::mutate_all(~case_when(stringr::str_detect(., "dezacord puternic") ~ 1,
dplyr::str_detect(., "dezacord") ~ 2,
stringr::str_detect(., "neutru") ~ 3,
stringr::str_detect(., "acord") ~ 4,
stringr::str_detect(., "acord puternic") ~ 5,
stringrTRUE ~ NA_real_))
sprintf("PSmot_%d", 1:4)] <-
scale_df_post[, sprintf("PSmot_%d", 1:4)] %>%
scale_df_post[, ::mutate_all(~case_when(stringr::str_detect(., "dezacord puternic") ~ 1,
dplyr::str_detect(., "dezacord") ~ 2,
stringr::str_detect(., "neutru") ~ 3,
stringr::str_detect(., "acord") ~ 4,
stringr::str_detect(., "acord puternic") ~ 5,
stringrTRUE ~ NA_real_))
$PSmot_Total <- ScoreLikert(scale_df_pre[, index_item_PSmot], tonumeric = TRUE, napercent = .33)
scale_df_pre$PSmot_Total <- ScoreLikert(scale_df_post[, index_item_PSmot], tonumeric = TRUE, napercent = .33)
scale_df_post
# PS iden
<- 45:47
index_item_PSiden colnames(scale_df_pre)[index_item_PSiden] <- sprintf("PSiden_%d", 1:3)
colnames(scale_df_post)[index_item_PSiden] <- sprintf("PSiden_%d", 1:3)
sprintf("PSiden_%d", 1:3)] <-
scale_df_pre[, sprintf("PSiden_%d", 1:3)] %>%
scale_df_pre[, ::mutate_all(~case_when(stringr::str_detect(., "dezacord puternic") ~ 1,
dplyr::str_detect(., "dezacord") ~ 2,
stringr::str_detect(., "neutru") ~ 3,
stringr::str_detect(., "acord") ~ 4,
stringr::str_detect(., "acord puternic") ~ 5,
stringrTRUE ~ NA_real_))
sprintf("PSiden_%d", 1:3)] <-
scale_df_post[, sprintf("PSiden_%d", 1:3)] %>%
scale_df_post[, ::mutate_all(~case_when(stringr::str_detect(., "dezacord puternic") ~ 1,
dplyr::str_detect(., "dezacord") ~ 2,
stringr::str_detect(., "neutru") ~ 3,
stringr::str_detect(., "acord") ~ 4,
stringr::str_detect(., "acord puternic") ~ 5,
stringrTRUE ~ NA_real_))
$PSiden_Total <- ScoreLikert(scale_df_pre[, index_item_PSiden], tonumeric = TRUE, napercent = .33)
scale_df_pre$PSiden_Total <- ScoreLikert(scale_df_post[, index_item_PSiden], tonumeric = TRUE, napercent = .33)
scale_df_post
# IOS
colnames(scale_df_pre)[48] <- "IOS"
colnames(scale_df_post)[48] <- "IOS"
$IOS <- as.numeric(scale_df_pre$IOS)
scale_df_pre$IOS <- as.numeric(scale_df_post$IOS)
scale_df_post
%>%
scale_df_pre ::count(id) %>%
dplyr::filter(n > 1) # correct unique: 7RMN 01-27, 43GSR 04-23 dplyr
<-
scale_df_pre %>%
scale_df_pre ::filter(!(id == "7RMN" & Date == lubridate::as_datetime("2020-07-17 14:12:37"))) %>%
dplyr::filter(!(id == "43GSR" & Date == lubridate::as_datetime("2021-04-12 21:10:00")))
dplyr
%>%
scale_df_post ::count(id) %>%
dplyr::filter(n > 1) # correct unique: 43GSR 05-03, 30GSR 05-20, 41GSR 04-28 dplyr
<-
scale_df_post %>%
scale_df_post ::filter(!(id == "43GSR" & Date == lubridate::as_datetime("2021-04-27 15:37:57"))) %>%
dplyr::filter(!(id == "30GSR" & Date == lubridate::as_datetime("2021-04-25 13:06:02"))) %>%
dplyr::filter(!(id == "41GSR" & Date == lubridate::as_datetime("2021-04-25 09:15:30")))
dplyr
# Unite scale df - Long Format
<- rbind(scale_df_pre, scale_df_post)
scale_united_long
<-
scale_united_long %>%
scale_united_long ::group_by(id) %>%
dplyr::filter(n() > 1) %>%
dplyr::ungroup() %>%
dplyr::mutate(PrePost = factor(PrePost, levels = c("Pre", "Post"))) dplyr
%>%
scale_united_long ::filter(Cond == "CONTROL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "online") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "PTSD", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "CONTROL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "CONTROL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "Burnout", Exp_type == "GSR") %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("GSR", "RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PSS_Total, outlier.label = id,
xlab = "", ylab = "PSS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("GSR", "RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = NA_Total, outlier.label = id,
xlab = "", ylab = "NA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("GSR", "RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = PA_Total, outlier.label = id,
xlab = "", ylab = "PA",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
%>%
scale_united_long ::filter(Cond == "EXPERIMENTAL", Grup == "pop gen", Exp_type %in% c("GSR", "RMN", "OXT")) %>%
dplyrmy_ggwithinstats2(x = PrePost, y = IOS, outlier.label = id,
xlab = "", ylab = "IOS",
title = "EXPERIMENTAL")
Scale for 'colour' is already present. Adding another scale for 'colour', which will replace the existing scale.
R version 4.1.0 (2021-05-18)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 8.1 x64 (build 9600)
Matrix products: default
locale:
[1] LC_COLLATE=Romanian_Romania.1250 LC_CTYPE=Romanian_Romania.1250 LC_MONETARY=Romanian_Romania.1250 LC_NUMERIC=C
[5] LC_TIME=Romanian_Romania.1250
system code page: 1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] rio_0.5.27 scales_1.1.1 ggpubr_0.4.0 rstatix_0.7.0 broom_0.7.9
[6] PerformanceAnalytics_2.0.4 xts_0.12.1 zoo_1.8-9 psych_2.1.6 forcats_0.5.1
[11] stringr_1.4.0 dplyr_1.0.7 purrr_0.3.4 readr_2.0.1 tidyr_1.1.3
[16] tibble_3.1.4 ggplot2_3.3.5 tidyverse_1.3.1 papaja_0.1.0.9997 pacman_0.5.1
loaded via a namespace (and not attached):
[1] readxl_1.3.1 pairwiseComparisons_3.1.6 backports_1.2.1 plyr_1.8.6 splines_4.1.0
[6] gmp_0.6-2 kSamples_1.2-9 ipmisc_6.0.2 TH.data_1.0-10 digest_0.6.28
[11] SuppDists_1.1-9.5 fansi_0.5.0 magrittr_2.0.1 memoise_2.0.0 paletteer_1.4.0
[16] tzdb_0.1.2 openxlsx_4.2.4 modelr_0.1.8 sandwich_3.0-1 colorspace_2.0-2
[21] rvest_1.0.1 ggrepel_0.9.1 haven_2.4.3 xfun_0.25 crayon_1.4.1
[26] jsonlite_1.7.2 zeallot_0.1.0 survival_3.2-13 glue_1.4.2 gtable_0.3.0
[31] emmeans_1.6.3 MatrixModels_0.5-0 statsExpressions_1.1.0 car_3.0-11 Rmpfr_0.8-4
[36] abind_1.4-5 mvtnorm_1.1-2 DBI_1.1.1 PMCMRplus_1.9.0 Rcpp_1.0.7
[41] xtable_1.8-4 performance_0.7.3 tmvnsim_1.0-2 foreign_0.8-81 datawizard_0.2.0.1
[46] httr_1.4.2 ellipsis_0.3.2 farver_2.1.0 pkgconfig_2.0.3 reshape_0.8.8
[51] multcompView_0.1-8 dbplyr_2.1.1 utf8_1.2.2 janitor_2.1.0 labeling_0.4.2
[56] tidyselect_1.1.1 rlang_0.4.11 effectsize_0.4.5 munsell_0.5.0 cellranger_1.1.0
[61] tools_4.1.0 cachem_1.0.6 cli_3.0.1 ggprism_1.0.3 generics_0.1.0
[66] fastmap_1.1.0 BWStest_0.2.2 rematch2_2.1.2 knitr_1.33 fs_1.5.0
[71] zip_2.2.0 WRS2_1.1-3 pbapply_1.4-3 nlme_3.1-152 xml2_1.3.2
[76] correlation_0.7.0 compiler_4.1.0 rstudioapi_0.13 curl_4.3.2 ggsignif_0.6.2
[81] reprex_2.0.1 stringi_1.7.4 parameters_0.14.0 lattice_0.20-44 Matrix_1.3-4
[86] vctrs_0.3.8 pillar_1.6.3 lifecycle_1.0.1 mc2d_0.1-21 estimability_1.3
[91] data.table_1.14.0 insight_0.14.4 patchwork_1.1.1 R6_2.5.1 BayesFactor_0.9.12-4.2
[96] codetools_0.2-18 boot_1.3-28 MASS_7.3-54 gtools_3.9.2 assertthat_0.2.1
[101] withr_2.4.2 mnormt_2.0.2 multcomp_1.4-17 bayestestR_0.11.0 parallel_4.1.0
[106] hms_1.1.0 quadprog_1.5-8 grid_4.1.0 coda_0.19-4 snakecase_0.11.0
[111] carData_3.0-4 lubridate_1.7.10 ggstatsplot_0.8.0
Â
A work by Claudiu Papasteri
Â