## Define function that recodes to numeric, but watches out to coercion to not introduce NAs
<- function(df){
colstonumeric tryCatch({
<- as.data.frame(
df_num lapply(df,
function(x) { as.numeric(as.character(x))}))
warning = function(stop_on_warning) {
},message("Stoped the execution of numeric conversion: ", conditionMessage(stop_on_warning))
})
}##
## Define function that reverse codes items
<- function(df, tonumeric = FALSE, min = NULL, max = NULL) {
ReverseCode if(tonumeric) df <- colstonumeric(df)
<- (max + min) - df
df
}##
## Define function that scores only rows with less than 10% NAs (returns NA if all or above threshold percentage of rows are NA); can reverse code if vector of column indexes and min, max are provided.
<- function(df, napercent = .1, tonumeric = FALSE, reversecols = NULL, min = NULL, max = NULL, engine = "sum") {
ScoreLikert <- list(reversecols = reversecols, min = min, max = max)
reverse_list <- !sapply(reverse_list, is.null)
reverse_check
# Recode to numeric, but watch out to coercion to not introduce NAs
<- function(df){
colstonumeric tryCatch({
<- as.data.frame(
df_num lapply(df,
function(x) { as.numeric(as.character(x))}))
warning = function(stop_on_warning) {
},message("Stoped the execution of numeric conversion: ", conditionMessage(stop_on_warning))
})
}
if(tonumeric) df <- colstonumeric(df)
if(all(reverse_check)){
<- (max + min) - df[ ,reversecols]
df[ ,reversecols] else if(any(reverse_check)){
}stop("Insuficient info for reversing. Please provide: ", paste(names(reverse_list)[!reverse_check], collapse = ", "))
}
if(engine == "sum") {
return(
ifelse(rowSums(is.na(df)) > ncol(df) * napercent,
NA,
rowSums(df, na.rm = TRUE) * NA ^ (rowSums(!is.na(df)) == 0)
)
)
}
if(engine == "mean") {
return(
ifelse(rowMeans(is.na(df)) > ncol(df) * napercent,
NA,
rowMeans(df, na.rm = TRUE) * NA ^ (rowSums(!is.na(df)) == 0)
)
)
}
if(engine == "mean_na") {
is.na(df)] <- 0
df[rowMeans(df)
} }
# LimeSurvey export survey as .txt (.xml is good too, but easier to work with .txt)
<- readr::read_delim("limesurvey_survey_192485.txt", delim = '\t') survey_df
Rows: 237 Columns: 147-- Column specification ------------------------------------------------------------------------------------------------------------------------
Delimiter: "\t"
chr (11): class, type/scale, name, relevance, text, language, mandatory, encrypted, other, em_validation_q, em_validation_q_tip
dbl (25): id, related_id, same_default, same_script, alphasort, array_filter_style, assessment_value, display_type, dropdown_prefix, exclud...
lgl (111): help, validation, default, allowed_filetypes, answer_width, answer_width_bycolumn, array_filter, array_filter_exclude, category_s...
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
<-
survey_df %>%
survey_df select_if(~ !all(is.na(.)))
<-
survey_codetext %>%
survey_df select(name, text) %>%
slice(
seq(
from = min(which(str_detect(name, "nt Informat"))),
to = nrow(.)
%>%
)) mutate(row_no = row_number()) %>%
relocate(row_no)
::datatable(
DT3:nrow(survey_codetext),],
survey_codetext[extensions = "Buttons",
fillContainer = TRUE,
rownames = FALSE,
selection = "multiple",
# style = "bootstrap",
# class = "compact", #width = "1000px",
options = list(
#autowidth = TRUE,
deferRender = FALSE,
pageLength = 30,
scrollX = "100px",
# scrollY = "400px"
dom = "Bfrtip",
buttons = c("excel", "csv")
) )
Registered S3 method overwritten by 'htmlwidgets':
method from
print.htmlwidget tools:rstudio
<-
item_codetext %>%
survey_codetext slice(
seq(
from = which(str_detect(name, "Demografice")) + 1,
to = nrow(.)
%>%
)) mutate(
clean_text = str_remove_all(text, "<.*?>"), # remove HTML tags
is_question = str_detect(name, "^G0.*"), # tag questions
is_subquestion = str_detect(name, "^SQ.*"), # tag subquestions
is_answer = str_detect(name, "^AO.*"), # tag answer definitions
quest_no = cumsum(is_question), # number all questions
question = if_else(is_question, name, NA_character_), # get question codes
subquestion = if_else(is_subquestion, name, NA_character_), # get subquestion codes
question_text = if_else(is_question, clean_text, NA_character_), # get question texts
subquestion_text = if_else(is_subquestion, clean_text, NA_character_), # get subquestion texts
answer =
if_else(is_answer,
paste0("\"", name, "\"", " = ", "\"", clean_text, "\""),
NA_character_
# paste definition of each answer
) %>%
) fill(question, .direction = "down") %>% # fill with same question, it appies for subquestions and answers
filter(is_question | is_subquestion | is_answer) # drop sections and other useless info
# Full info on items as list-columns dataframe
<-
item_info %>%
item_codetext select(question, subquestion, question_text, subquestion_text, answer) %>%
pivot_longer(cols = -question, values_drop_na = TRUE) %>%
pivot_wider(names_from = name, values_from = value, values_fn = list)
# Meant to be used as:
# def <- c("foo" = "bar", "zar" = "far")
# dplyr::recode(as.character(col), !!!def)
# e.g. item_def$answer[item_def$question == "G02Q03"]
# eval(parse(text = item_def$answer[item_def$question == "G02Q03"]))
<-
item_def %>%
item_codetext filter(is_answer) %>%
select(question, answer) %>%
group_by(question) %>%
mutate(answer = paste0(answer, collapse = ", "),
answer = paste0("c(", answer, ")")) %>%
distinct()
#e.g. on how to use item_def
# test_df <-
# df %>%
# mutate(
# across(
# .cols = starts_with("G02Q03"),
# .fns = ~recode(., !!!eval(parse(text = item_def$answer[item_def$question == "G02Q03"])))
# )
# )
::datatable(
DT
item_def,extensions = "Buttons",
fillContainer = TRUE,
rownames = FALSE,
selection = "multiple",
# style = "bootstrap",
# class = "compact", #width = "1000px",
options = list(
#autowidth = TRUE,
deferRender = FALSE,
pageLength = 15,
scrollX = "100px",
# scrollY = "400px"
dom = "Bfrtip",
buttons = c("excel", "csv")
) )
<- readr::read_csv("survey_192485_R_data_file.csv") df
Rows: 62 Columns: 112-- Column specification ------------------------------------------------------------------------------------------------------------------------
Delimiter: ","
chr (70): startlanguage, G02Q03, G02Q04, G03Q05, G03Q06, G03Q07, G03Q08, G03Q10, G03Q15, G04Q10[SQ001], G04Q10[SQ002], G04Q10[SQ003], G04Q1...
dbl (41): id, lastpage, seed, Q00[SQ001], G02Q02, G03Q09, G07Q13[SQ001], G07Q13[SQ002], G07Q13[SQ003], G07Q13[SQ004], G07Q13[SQ005], G07Q13...
dttm (1): submitdate
i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
# test_df <-
# map_dfc(
# item_def$question,
# \(x) {
# map(
# df %>%
# select(contains(x)),
# \(y) recode(y, !!!eval(parse(text = item_def$answer[str_detect(item_def$question, x)])))
# )
# }
# )
# Need to find a way to iterate this with purrr
<-
df_recoded %>%
df mutate(
across(
.cols = starts_with(item_def$question[1]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[1])])))
),across(
.cols = starts_with(item_def$question[2]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[2])])))
),across(
.cols = starts_with(item_def$question[3]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[3])])))
),across(
.cols = starts_with(item_def$question[4]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[4])])))
),across(
.cols = starts_with(item_def$question[5]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[5])])))
),across(
.cols = starts_with(item_def$question[6]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[6])])))
),across(
.cols = starts_with(item_def$question[7]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[7])])))
),across(
.cols = starts_with(item_def$question[8]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[8])])))
),across(
.cols = starts_with(item_def$question[9]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[9])])))
),across(
.cols = starts_with(item_def$question[10]),
.fns = ~recode(., !!!eval(parse(text = item_def$answer[str_detect(item_def$question, item_def$question[10])])))
)
)
# To numeric and rescale questionnaire items
# for numeric extraction: str_extract(x, "[0-9]") # "[0-9]+" for more digits, but Liker scales have only 1 digit
# [8] = G04Q10 = Reactiv [1, 7]
# [9] = G05Q11 = Empath [0, 4]
# [10] = G06Q12 = Online_Terap [1, 5]
# G07Q13 = QSort (is already numeric, but needs to be on scale [-4, +4])
<-
df_recoded2 %>%
df_recoded mutate(
across(
.cols = starts_with(c("G04Q10", "G05Q11", "G06Q12")),
.fns = ~as.numeric(str_extract(., "[0-9]")) # get only digits and to numeric
),across(
.cols = starts_with("G07Q13"),
.fns = ~((.-5)*(-1)) # to [-4, +4], where 1=+4, 9=-4
)
)# check - everything fine
# df_recoded2 %>% select(starts_with("G04Q10")) %>% summary()
# df_recoded2 %>% select(starts_with("G05Q11")) %>% summary()
# df_recoded2 %>% select(starts_with("G06Q12")) %>% summary()
# df_recoded2 %>% select(starts_with("G07Q13")) %>% summary()
## IRI
# Scales with reversed c(3,4,7,12,13,14,15,18,19) min = 0, max = 4
# Empathic Concern - IRI_EC c(1,5,7,12,16,23,26)
# Perspective Taking - IRI_PT c(3,8,11,15,21,25,28)
# Fantasy - IRI_F c(2,4,9,14,18,20,22)
# Personal Distress - IRI_PD c(6,10,13,17,19,24,27)
<- df_recoded2 %>% select(starts_with("G05Q11")) %>% colnames()
idx_iri <- c(3,4,7,12,13,14,15,18,19) %>% sprintf('%0.3d', .) %>% paste0("G05Q11[SQ", . ,"]")
idx_item_iri_rev <- c(1,5,7,12,16,23,26) %>% sprintf('%0.3d', .) %>% paste0("G05Q11[SQ", . ,"]")
idx_item_iri_ec <- c(3,8,11,15,21,25,28) %>% sprintf('%0.3d', .) %>% paste0("G05Q11[SQ", . ,"]")
idx_item_iri_pt <- c(2,4,9,14,18,20,22) %>% sprintf('%0.3d', .) %>% paste0("G05Q11[SQ", . ,"]")
idx_item_iri_f <- c(6,10,13,17,19,24,27) %>% sprintf('%0.3d', .) %>% paste0("G05Q11[SQ", . ,"]")
idx_item_iri_pd
$IRI_EC <- ScoreLikert(df_recoded2[idx_item_iri_ec], reversecols = intersect(idx_item_iri_rev, idx_item_iri_ec), napercent = .9, min = 0, max = 4)
df_recoded2$IRI_PT <- ScoreLikert(df_recoded2[idx_item_iri_pt], reversecols = intersect(idx_item_iri_rev, idx_item_iri_pt), napercent = .9, min = 0, max = 4)
df_recoded2$IRI_F <- ScoreLikert(df_recoded2[idx_item_iri_f], reversecols = intersect(idx_item_iri_rev, idx_item_iri_f), napercent = .9, min = 0, max = 4)
df_recoded2$IRI_PD <- ScoreLikert(df_recoded2[idx_item_iri_pd], reversecols = intersect(idx_item_iri_rev, idx_item_iri_pd), napercent = .9, min = 0, max = 4) df_recoded2
# UTAUT
# Scales with reversed c(5,9,11,20,21) min = 1, max = 5
# Therapy Quality Expectation: 1,2,5R,6,9R,11R,15,17,21R; - UT_QE c(1,2,5,6,9,11,15,17,21)
# Ease of use: 12,14,18,20R; - UT_EU c(12,14,18,20)
# Pressure from others: 4,16; - UT_PO c(4,16)
# Professional Support: 8,19; - UT_PS c(8,19)
# Convenience: 3,13; - UT_C c(3,13)
# Behavior intention: 7,10 - UT_BI c(7,10)
<- df_recoded2 %>% select(starts_with("G06Q12")) %>% colnames()
idx_ut <- c(5,9,11,20,21) %>% sprintf('%0.3d', .) %>% paste0("G06Q12[SQ", . ,"]")
idx_item_ut_rev <- c(1,2,5,6,9,11,15,17,21) %>% sprintf('%0.3d', .) %>% paste0("G06Q12[SQ", . ,"]")
idx_item_ut_qe <- c(12,14,18,20) %>% sprintf('%0.3d', .) %>% paste0("G06Q12[SQ", . ,"]")
idx_item_ut_eu <- c(4,16) %>% sprintf('%0.3d', .) %>% paste0("G06Q12[SQ", . ,"]")
idx_item_ut_po <- c(8,19) %>% sprintf('%0.3d', .) %>% paste0("G06Q12[SQ", . ,"]")
idx_item_ut_ps <- c(3,13) %>% sprintf('%0.3d', .) %>% paste0("G06Q12[SQ", . ,"]")
idx_item_ut_c <- c(7,10) %>% sprintf('%0.3d', .) %>% paste0("G06Q12[SQ", . ,"]")
idx_item_ut_bi
$UT_QE <- ScoreLikert(df_recoded2[idx_item_ut_qe], reversecols = intersect(idx_item_ut_rev, idx_item_ut_qe), napercent = .9, min = 1, max = 5)
df_recoded2$UT_EU <- ScoreLikert(df_recoded2[idx_item_ut_eu], reversecols = intersect(idx_item_ut_rev, idx_item_ut_eu), napercent = .9, min = 1, max = 5)
df_recoded2$UT_PO <- ScoreLikert(df_recoded2[idx_item_ut_po], napercent = .9)
df_recoded2$UT_PS <- ScoreLikert(df_recoded2[idx_item_ut_ps], napercent = .9)
df_recoded2$UT_C <- ScoreLikert(df_recoded2[idx_item_ut_c], napercent = .9)
df_recoded2$UT_BI <- ScoreLikert(df_recoded2[idx_item_ut_bi], napercent = .9)
df_recoded2
$UT_Total <- rowSums(df_recoded2[, c("UT_QE", "UT_EU", "UT_PO", "UT_PS", "UT_C", "UT_BI")], na.rm = TRUE) df_recoded2
# ----------------------------------------
# Item texts
<- read_lines("JHP_operationalis_items.txt") %>% as.vector()
item_qsort_text
# Grid
# 2 +
# 3 +
# 4 + # 9 Important
# 5 +
# 7 +
# 5 + # 17 Some what important / Neutral
# 4 +
# 3 +
# 2 # 9 Unimportant
<- c(
distro rep(-4, 2), rep(-3, 3), rep(-2, 4),
rep(-1, 5), rep(0, 7), rep(1, 5),
rep(2, 4), rep(3, 3), rep(4, 2)
)
# ----------------------------------------
# Prepare data for QMethod
# QMethod needs statements on rows and sorts on columns (t())
<- df_recoded2 %>% select(starts_with("G07Q13")) %>% colnames()
idx_qsort <-
df_qsort_data c("id", idx_qsort)] %>%
df_recoded2[, column_to_rownames(var = "id") %>%
t() %>%
as.data.frame()
<- paste(rownames(df_qsort_data), item_qsort_text) %>% data.frame(item_text = .)
df_qsort_text <- list(df_qsort_data, df_qsort_text)
list_qsort
# ----------------------------------------
# Number of factors to extract
screeplot(prcomp(df_qsort_data), main = "Screeplot of unrotated factors", type = "l") # 3 factors?
# psych::fa.parallel(df_recoded2[idx_qsort])
# ----------------------------------------
# Run the analysis using centroid factor extraction instead of PCA, and without rotation:
<- qmethod::qmethod(
results nfactors = 3,
df_qsort_data, forced = FALSE, silent = TRUE,
distribution = distro
)
Warning: Matrix was not positive definite, smoothing was done
# qmethod:::summary.QmethodRes(results)
# ----------------------------------------
# Print results
$loa %>% knitr::kable(caption = "Q-sort factor loadings") results
f1 | f2 | f3 | |
---|---|---|---|
11 | 0.1448174 | -0.1493926 | 0.2870959 |
37 | 0.4036963 | 0.0870309 | 0.0036444 |
46 | 0.3371961 | -0.1885360 | -0.2839555 |
48 | 0.3801602 | 0.1896942 | 0.0404194 |
59 | 0.3187108 | 0.3548153 | -0.1701790 |
61 | 0.6283885 | 0.2828332 | 0.0785425 |
63 | 0.7910716 | 0.2260446 | -0.0625294 |
72 | 0.4599512 | 0.7587518 | 0.0222622 |
82 | 0.7153469 | 0.2856906 | -0.0641746 |
83 | 0.2274653 | 0.5840321 | 0.2333818 |
86 | 0.8727622 | 0.0587445 | 0.0706060 |
92 | 0.6766646 | 0.3048455 | 0.2312658 |
93 | 0.2480217 | 0.5454371 | 0.0536399 |
95 | -0.1847161 | 0.0850928 | 0.7096890 |
96 | 0.4670216 | 0.2396781 | -0.0344271 |
101 | 0.3852143 | 0.5777452 | 0.0940112 |
102 | 0.0171218 | 0.8171551 | -0.0695304 |
105 | 0.2602513 | 0.0042346 | 0.6987283 |
106 | 0.5592579 | 0.4607125 | 0.0194947 |
109 | 0.6743180 | 0.2498041 | 0.1232818 |
113 | 0.2296119 | 0.3606906 | 0.4150292 |
119 | 0.3884485 | 0.0722941 | 0.3759224 |
134 | 0.0495205 | 0.4784501 | -0.3370000 |
136 | 0.2538040 | 0.0701075 | 0.6300563 |
137 | -0.2681886 | 0.6658006 | 0.4266023 |
138 | -0.1837901 | -0.2033856 | -0.1360679 |
139 | 0.3149728 | 0.3155733 | 0.5054717 |
144 | 0.1998164 | 0.4997272 | 0.1174611 |
145 | 0.0223731 | 0.3671758 | 0.6732903 |
153 | 0.2985307 | 0.7252353 | 0.3182971 |
154 | 0.0827397 | 0.1634768 | 0.5799035 |
159 | -0.0935166 | 0.0122940 | 0.3759428 |
171 | 0.0161382 | 0.3335623 | 0.6084304 |
176 | 0.4029480 | 0.3731108 | 0.3626730 |
179 | 0.4535236 | -0.0128897 | 0.1664832 |
182 | 0.6866053 | 0.1516792 | 0.0153027 |
191 | 0.7455406 | 0.3067641 | 0.0568509 |
192 | 0.1656963 | 0.1701053 | 0.1198699 |
194 | 0.3038405 | 0.5461032 | 0.1536679 |
197 | 0.3484276 | 0.6687571 | 0.0660291 |
210 | 0.0179998 | 0.0621173 | 0.4600565 |
216 | 0.4647100 | -0.1753287 | 0.4543671 |
221 | 0.0678609 | 0.7164278 | 0.2561961 |
222 | -0.1290470 | 0.4030607 | 0.2417725 |
229 | 0.5161928 | 0.2262611 | 0.3557571 |
234 | 0.3626340 | 0.4369613 | 0.2952123 |
235 | 0.6136234 | -0.0543764 | -0.0843731 |
237 | 0.9198644 | 0.0616210 | -0.0571609 |
240 | 0.1578428 | 0.6338213 | 0.3931845 |
244 | 0.4757014 | -0.0607942 | 0.4608155 |
259 | 0.3998005 | 0.2733487 | 0.2896759 |
264 | -0.4890947 | 0.0952293 | 0.3071036 |
269 | -0.2221640 | 0.0268601 | 0.5346176 |
271 | 0.0590251 | -0.1060707 | -0.1607999 |
280 | -0.4083028 | 0.0747994 | 0.6216368 |
283 | 0.4447168 | 0.4106412 | 0.0169136 |
285 | 0.1091876 | 0.2380480 | 0.4315982 |
286 | 0.3583201 | 0.3292532 | 0.2807049 |
287 | 0.1312776 | 0.6863478 | 0.3010843 |
288 | 0.2190694 | 0.0803580 | 0.6833975 |
289 | -0.0053536 | 0.4047308 | 0.5590562 |
291 | 0.1728088 | -0.3437969 | 0.2801386 |
$flagged %>% knitr::kable(caption = "Flagged Q-sorts") results
flag_f1 | flag_f2 | flag_f3 | |
---|---|---|---|
11 | FALSE | FALSE | FALSE |
37 | TRUE | FALSE | FALSE |
46 | FALSE | FALSE | FALSE |
48 | TRUE | FALSE | FALSE |
59 | FALSE | FALSE | FALSE |
61 | TRUE | FALSE | FALSE |
63 | TRUE | FALSE | FALSE |
72 | FALSE | TRUE | FALSE |
82 | TRUE | FALSE | FALSE |
83 | FALSE | TRUE | FALSE |
86 | TRUE | FALSE | FALSE |
92 | TRUE | FALSE | FALSE |
93 | FALSE | TRUE | FALSE |
95 | FALSE | FALSE | TRUE |
96 | TRUE | FALSE | FALSE |
101 | FALSE | TRUE | FALSE |
102 | FALSE | TRUE | FALSE |
105 | FALSE | FALSE | TRUE |
106 | TRUE | FALSE | FALSE |
109 | TRUE | FALSE | FALSE |
113 | FALSE | FALSE | FALSE |
119 | TRUE | FALSE | FALSE |
134 | FALSE | TRUE | FALSE |
136 | FALSE | FALSE | TRUE |
137 | FALSE | TRUE | FALSE |
138 | FALSE | FALSE | FALSE |
139 | FALSE | FALSE | TRUE |
144 | FALSE | TRUE | FALSE |
145 | FALSE | FALSE | TRUE |
153 | FALSE | TRUE | FALSE |
154 | FALSE | FALSE | TRUE |
159 | FALSE | FALSE | TRUE |
171 | FALSE | FALSE | TRUE |
176 | FALSE | FALSE | FALSE |
179 | TRUE | FALSE | FALSE |
182 | TRUE | FALSE | FALSE |
191 | TRUE | FALSE | FALSE |
192 | FALSE | FALSE | FALSE |
194 | FALSE | TRUE | FALSE |
197 | FALSE | TRUE | FALSE |
210 | FALSE | FALSE | TRUE |
216 | FALSE | FALSE | FALSE |
221 | FALSE | TRUE | FALSE |
222 | FALSE | TRUE | FALSE |
229 | TRUE | FALSE | FALSE |
234 | FALSE | FALSE | FALSE |
235 | TRUE | FALSE | FALSE |
237 | TRUE | FALSE | FALSE |
240 | FALSE | TRUE | FALSE |
244 | TRUE | FALSE | FALSE |
259 | TRUE | FALSE | FALSE |
264 | TRUE | FALSE | FALSE |
269 | FALSE | FALSE | TRUE |
271 | FALSE | FALSE | FALSE |
280 | FALSE | FALSE | TRUE |
283 | TRUE | FALSE | FALSE |
285 | FALSE | FALSE | TRUE |
286 | FALSE | FALSE | FALSE |
287 | FALSE | TRUE | FALSE |
288 | FALSE | FALSE | TRUE |
289 | FALSE | FALSE | TRUE |
291 | FALSE | TRUE | FALSE |
# I think flagged is based on some cutoff on loadings
# try_calc_flag <- !results$loa - apply(results$loa, 1, max) & abs(results$loa) >= .37
# identical(try_calc_flag, results$flagged)
# all.equal(try_calc_flag, results$flagged) # close enough ... so it's max loading and some cutoff probably
$zsc %>% knitr::kable(caption = "Statement z-scores") results
zsc_f1 | zsc_f2 | zsc_f3 | |
---|---|---|---|
G07Q13[SQ001] | 2.1163900 | 1.8570656 | 2.4116093 |
G07Q13[SQ002] | 2.0703094 | 2.0089255 | 2.2103663 |
G07Q13[SQ003] | 1.6103591 | 1.5893563 | 1.0348899 |
G07Q13[SQ004] | 1.6151539 | 1.3952435 | -0.3864255 |
G07Q13[SQ005] | 1.6695393 | 1.0947901 | -1.4258683 |
G07Q13[SQ006] | 1.1057587 | 0.3603414 | -1.1210153 |
G07Q13[SQ007] | 1.0027605 | 0.1308645 | -1.6280403 |
G07Q13[SQ008] | 0.2895092 | 0.1329359 | -0.1558329 |
G07Q13[SQ009] | 0.4332790 | 0.2263094 | -0.7236585 |
G07Q13[SQ010] | 0.1841820 | 0.5248865 | 0.5335942 |
G07Q13[SQ011] | 0.0091631 | -0.5792138 | -0.2000609 |
G07Q13[SQ012] | -0.2688383 | 0.1338902 | 0.1139803 |
G07Q13[SQ013] | -1.1843425 | -0.0054289 | 0.3544529 |
G07Q13[SQ014] | -1.1497751 | 0.7369696 | 0.6411160 |
G07Q13[SQ015] | -1.3501110 | 0.3481251 | 0.4525810 |
G07Q13[SQ016] | -0.9353470 | 0.6368652 | 0.4377675 |
G07Q13[SQ017] | -1.3531174 | -0.5481111 | -0.2176812 |
G07Q13[SQ018] | -1.1027838 | -0.9137774 | -0.5339872 |
G07Q13[SQ019] | -0.4185989 | -0.2303308 | 0.4940304 |
G07Q13[SQ020] | -1.0868747 | -1.4081651 | -1.5395981 |
G07Q13[SQ021] | -0.4751558 | 0.2355206 | 2.0458886 |
G07Q13[SQ022] | -0.9782590 | 0.1685800 | 0.8508475 |
G07Q13[SQ023] | -0.5630221 | -0.5692688 | -1.5303506 |
G07Q13[SQ024] | -0.5377150 | 0.0960759 | -0.7484994 |
G07Q13[SQ025] | -0.1565261 | 0.3791426 | -0.3188503 |
G07Q13[SQ026] | 0.1254461 | 0.9932803 | -0.0593661 |
G07Q13[SQ027] | -0.6041356 | -0.8419211 | 0.2012172 |
G07Q13[SQ028] | -1.3492289 | 0.6992244 | -0.6614467 |
G07Q13[SQ029] | -0.1826839 | -0.9806495 | 0.4709171 |
G07Q13[SQ030] | 0.3923762 | -0.1501840 | 1.0374177 |
G07Q13[SQ031] | -0.1565437 | -1.1547716 | -0.0733107 |
G07Q13[SQ032] | -0.0436621 | -1.3615160 | -0.5417103 |
G07Q13[SQ033] | 0.5957526 | -1.9299018 | 0.0291191 |
G07Q13[SQ034] | 0.3136338 | -1.9783381 | -0.3257159 |
G07Q13[SQ035] | 0.3631082 | -1.0968146 | -1.1283769 |
$zsc_n %>% knitr::kable(caption = "Statement factor scores") results
fsc_f1 | fsc_f2 | fsc_f3 | |
---|---|---|---|
G07Q13[SQ001] | 4 | 4 | 4 |
G07Q13[SQ002] | 4 | 4 | 4 |
G07Q13[SQ003] | 3 | 3 | 3 |
G07Q13[SQ004] | 3 | 3 | -1 |
G07Q13[SQ005] | 3 | 3 | -3 |
G07Q13[SQ006] | 2 | 1 | -2 |
G07Q13[SQ007] | 2 | 0 | -4 |
G07Q13[SQ008] | 1 | 0 | 0 |
G07Q13[SQ009] | 2 | 0 | -2 |
G07Q13[SQ010] | 1 | 1 | 2 |
G07Q13[SQ011] | 0 | -1 | 0 |
G07Q13[SQ012] | 0 | 0 | 0 |
G07Q13[SQ013] | -3 | 0 | 1 |
G07Q13[SQ014] | -3 | 2 | 2 |
G07Q13[SQ015] | -4 | 1 | 1 |
G07Q13[SQ016] | -2 | 2 | 1 |
G07Q13[SQ017] | -4 | -1 | 0 |
G07Q13[SQ018] | -2 | -2 | -1 |
G07Q13[SQ019] | -1 | -1 | 2 |
G07Q13[SQ020] | -2 | -3 | -4 |
G07Q13[SQ021] | -1 | 1 | 3 |
G07Q13[SQ022] | -2 | 0 | 2 |
G07Q13[SQ023] | -1 | -1 | -3 |
G07Q13[SQ024] | -1 | 0 | -2 |
G07Q13[SQ025] | 0 | 1 | -1 |
G07Q13[SQ026] | 0 | 2 | 0 |
G07Q13[SQ027] | -1 | -2 | 1 |
G07Q13[SQ028] | -3 | 2 | -2 |
G07Q13[SQ029] | 0 | -2 | 1 |
G07Q13[SQ030] | 1 | -1 | 3 |
G07Q13[SQ031] | 0 | -3 | 0 |
G07Q13[SQ032] | 0 | -3 | -1 |
G07Q13[SQ033] | 2 | -4 | 0 |
G07Q13[SQ034] | 1 | -4 | -1 |
G07Q13[SQ035] | 1 | -2 | -3 |
$f_char$characteristics %>% knitr::kable(caption = "Factor characteristics") results
av_rel_coef | nload | eigenvals | expl_var | reliability | se_fscores | |
---|---|---|---|---|---|---|
f1 | 0.8 | 21 | 10.275122 | 16.57278 | 0.9882353 | 0.1084652 |
f2 | 0.8 | 16 | 8.683763 | 14.00607 | 0.9846154 | 0.1240347 |
f3 | 0.8 | 14 | 7.471523 | 12.05084 | 0.9824561 | 0.1324532 |
$f_char$cor_zsc %>% knitr::kable(caption = "Correlation between factor z-scores") results
zsc_f1 | zsc_f2 | zsc_f3 | |
---|---|---|---|
zsc_f1 | 1.0000000 | 0.4334072 | 0.1612968 |
zsc_f2 | 0.4334072 | 1.0000000 | 0.4201442 |
zsc_f3 | 0.1612968 | 0.4201442 | 1.0000000 |
$f_char$sd_dif %>% knitr::kable(caption = "Standard error of differences between factors") results
f1 | f2 | f3 | |
---|---|---|---|
f1 | 0.1533930 | 0.1647705 | 0.1711974 |
f2 | 0.1647705 | 0.1754116 | 0.1814620 |
f3 | 0.1711974 | 0.1814620 | 0.1873172 |
$qdc %>% knitr::kable(caption = "Distinguishing and consensus statements") results
dist.and.cons | f1_f2 | sig_f1_f2 | f1_f3 | sig_f1_f3 | f2_f3 | sig_f2_f3 | |
---|---|---|---|---|---|---|---|
G07Q13[SQ001] | 0.2593244 | -0.2952194 | -0.5545437 | ** | |||
G07Q13[SQ002] | Consensus | 0.0613839 | -0.1400570 | -0.2014409 | |||
G07Q13[SQ003] | Distinguishes f3 only | 0.0210028 | 0.5754692 | *** | 0.5544664 | ** | |
G07Q13[SQ004] | Distinguishes f3 only | 0.2199104 | 2.0015793 | 6* | 1.7816690 | 6* | |
G07Q13[SQ005] | Distinguishes all | 0.5747492 | *** | 3.0954076 | 6* | 2.5206584 | 6* |
G07Q13[SQ006] | Distinguishes all | 0.7454173 | *** | 2.2267740 | 6* | 1.4813567 | 6* |
G07Q13[SQ007] | Distinguishes all | 0.8718960 | 6* | 2.6308008 | 6* | 1.7589048 | 6* |
G07Q13[SQ008] | 0.1565733 | 0.4453421 | ** | 0.2887688 | |||
G07Q13[SQ009] | Distinguishes f3 only | 0.2069695 | 1.1569375 | 6* | 0.9499679 | 6* | |
G07Q13[SQ010] | Distinguishes f1 only | -0.3407045 | * | -0.3494122 | * | -0.0087077 | |
G07Q13[SQ011] | Distinguishes f2 only | 0.5883769 | *** | 0.2092240 | -0.3791529 | * | |
G07Q13[SQ012] | Distinguishes f1 only | -0.4027285 | * | -0.3828186 | * | 0.0199098 | |
G07Q13[SQ013] | Distinguishes all | -1.1789136 | 6* | -1.5387954 | 6* | -0.3598818 | * |
G07Q13[SQ014] | Distinguishes f1 only | -1.8867447 | 6* | -1.7908911 | 6* | 0.0958536 | |
G07Q13[SQ015] | Distinguishes f1 only | -1.6982360 | 6* | -1.8026920 | 6* | -0.1044560 | |
G07Q13[SQ016] | Distinguishes f1 only | -1.5722121 | 6* | -1.3731145 | 6* | 0.1990976 | |
G07Q13[SQ017] | Distinguishes f1 only | -0.8050063 | *** | -1.1354362 | 6* | -0.3304298 | |
G07Q13[SQ018] | Distinguishes f3 only | -0.1890064 | -0.5687966 | *** | -0.3797902 | * | |
G07Q13[SQ019] | Distinguishes f3 only | -0.1882681 | -0.9126293 | 6* | -0.7243612 | *** | |
G07Q13[SQ020] | 0.3212904 | 0.4527234 | ** | 0.1314330 | |||
G07Q13[SQ021] | Distinguishes all | -0.7106765 | *** | -2.5210444 | 6* | -1.8103680 | 6* |
G07Q13[SQ022] | Distinguishes all | -1.1468390 | 6* | -1.8291066 | 6* | -0.6822676 | *** |
G07Q13[SQ023] | Distinguishes f3 only | 0.0062466 | 0.9673285 | 6* | 0.9610818 | 6* | |
G07Q13[SQ024] | Distinguishes f2 only | -0.6337909 | *** | 0.2107844 | 0.8445753 | *** | |
G07Q13[SQ025] | Distinguishes f2 only | -0.5356687 | ** | 0.1623242 | 0.6979929 | *** | |
G07Q13[SQ026] | Distinguishes f2 only | -0.8678342 | 6* | 0.1848122 | 1.0526464 | 6* | |
G07Q13[SQ027] | Distinguishes f3 only | 0.2377856 | -0.8053528 | *** | -1.0431384 | 6* | |
G07Q13[SQ028] | Distinguishes all | -2.0484532 | 6* | -0.6877822 | *** | 1.3606710 | 6* |
G07Q13[SQ029] | Distinguishes all | 0.7979656 | *** | -0.6536010 | *** | -1.4515666 | 6* |
G07Q13[SQ030] | Distinguishes all | 0.5425602 | *** | -0.6450415 | *** | -1.1876017 | 6* |
G07Q13[SQ031] | Distinguishes f2 only | 0.9982279 | 6* | -0.0832330 | -1.0814609 | 6* | |
G07Q13[SQ032] | Distinguishes all | 1.3178539 | 6* | 0.4980483 | ** | -0.8198056 | *** |
G07Q13[SQ033] | Distinguishes all | 2.5256544 | 6* | 0.5666335 | *** | -1.9590209 | 6* |
G07Q13[SQ034] | Distinguishes all | 2.2919719 | 6* | 0.6393497 | *** | -1.6526222 | 6* |
G07Q13[SQ035] | Distinguishes f1 only | 1.4599229 | 6* | 1.4914851 | 6* | 0.0315623 |
# ----------------------------------------
# Plot
:::plot.QmethodRes(
qmethod
results,xlab = "z-scores", ylab = "",
leg.pos = "topright", sort.items = FALSE
)
# ----------------------------------------
# Order the results by the scores of each factor:
<- cbind(results$zsc_n, df_qsort_text)
scores # for (i in 1:length(results$loa)) { # this old code from doi:10.32614/RJ-2014-032 gives warning and additional ordering for
# View( # unexistant factor
# scores[base::order(scores[i], decreasing = TRUE), ],
# title = paste0("Order for f", i)
# )
# }
<-
order_f1 %>%
scores select(fsc_f1, item_text) %>%
arrange(desc(fsc_f1))
%>% knitr::kable(caption = "Order f1") order_f1
fsc_f1 | item_text | |
---|---|---|
G07Q13[SQ001] | 4 | G07Q13[SQ001] 1. Preocuparea autentica pentru binele clientului. |
G07Q13[SQ002] | 4 | G07Q13[SQ002] 2. Acceptarea clientului ca persoana. |
G07Q13[SQ003] | 3 | G07Q13[SQ003] 3. Respectul reciproc (între terapeut <U+0219>i client). |
G07Q13[SQ004] | 3 | G07Q13[SQ004] 4. Lucrul împreuna pe scopurile agreate mutual. |
G07Q13[SQ005] | 3 | G07Q13[SQ005] 5. Acordul între terapeut <U+0219>i client cu privire la ce este important sa lucreze. |
G07Q13[SQ006] | 2 | G07Q13[SQ006] 6. Acordul între terapeut <U+0219>i client cu privire la pa<U+0219>ii necesari pentru a facilita schimbarile dorite. |
G07Q13[SQ007] | 2 | G07Q13[SQ007] 7. În<U+021B>elegerea reciproca a tipurilor de schimbari care pot ajuta clientul. |
G07Q13[SQ009] | 2 | G07Q13[SQ009] 9. Optimismul clientului cu privire la viitor. |
G07Q13[SQ033] | 2 | G07Q13[SQ033] 33. Ventilarea sau descarcarea emo<U+021B>ionala. |
G07Q13[SQ008] | 1 | G07Q13[SQ008] 8. Sentimentul de mul<U+021B>umire de sine al clientului. |
G07Q13[SQ010] | 1 | G07Q13[SQ010] 10. Rezilien<U+021B>a clientului în situa<U+021B>ii de adversitate. |
G07Q13[SQ030] | 1 | G07Q13[SQ030] 30. Experien<U+021B>ele traumatice ale clientului. |
G07Q13[SQ034] | 1 | G07Q13[SQ034] 34. Exprimarea aspectelor dificile, cum ar fi secrete sau alte lucruri care nu au mai fost exprimate anterior. |
G07Q13[SQ035] | 1 | G07Q13[SQ035] 35. Deconstruirea strategiilor sau mecanismelor de evitare <U+0219>i aparare. |
G07Q13[SQ011] | 0 | G07Q13[SQ011] 11. Capacitatea clientului de a-<U+0219>i atinge scopurile. |
G07Q13[SQ012] | 0 | G07Q13[SQ012] 12. Stresul <U+0219>i dificulta<U+021B>ile emo<U+021B>ionale ale clientului. |
G07Q13[SQ025] | 0 | G07Q13[SQ025] 25. Transformarea sensului experien<U+021B>elor clientului. |
G07Q13[SQ026] | 0 | G07Q13[SQ026] 26. Capacitatea de autoreglare emo<U+021B>ionala a clientului. |
G07Q13[SQ029] | 0 | G07Q13[SQ029] 29. Experien<U+021B>ele interpersonale trecute aflate la originea problemelor curente ale clientului. |
G07Q13[SQ031] | 0 | G07Q13[SQ031] 31. Con<U+0219>tientizarea faptului ca manifestari disfunc<U+021B>ionale pot fi generate de mecanisme psihologice adaptive. |
G07Q13[SQ032] | 0 | G07Q13[SQ032] 32. Controlul emo<U+021B>iilor <U+0219>i al gândurilor nedorite. |
G07Q13[SQ019] | -1 | G07Q13[SQ019] 19. Sentimentul de auto-eficacitate <U+0219>i încredere în sine al clientului. |
G07Q13[SQ021] | -1 | G07Q13[SQ021] 21. Nivelul de con<U+0219>tientizare a clientului asupra propriei persoane / propriilor emo<U+021B>ii. |
G07Q13[SQ023] | -1 | G07Q13[SQ023] 23. Procesele de evitare ale clientului. |
G07Q13[SQ024] | -1 | G07Q13[SQ024] 24. Procesele de gândire disfunc<U+021B>ionala (rumina<U+021B>ie, gândirea excesiva/ overthinking, îngrijorare, autocritica, etc.). |
G07Q13[SQ027] | -1 | G07Q13[SQ027] 27. Asertivitatea <U+0219>i capacitatea clientului de a pune limite personale. |
G07Q13[SQ016] | -2 | G07Q13[SQ016] 16. Capacitatea clientului de a stabili rela<U+021B>ii sanatoase, satisfacatoare. |
G07Q13[SQ018] | -2 | G07Q13[SQ018] 18. Dificulta<U+021B>ile de adaptare ale clientului în mediile profesionale sau educa<U+021B>ionale. |
G07Q13[SQ020] | -2 | G07Q13[SQ020] 20. Satisfac<U+021B>ia clientului în activitatea de munca sau înva<U+021B>are. |
G07Q13[SQ022] | -2 | G07Q13[SQ022] 22. Capacitatea de exprimare emo<U+021B>ionala a clientului. |
G07Q13[SQ013] | -3 | G07Q13[SQ013] 13. Acuzele somatice <U+0219>i tulburarile de somn ale clientului. |
G07Q13[SQ014] | -3 | G07Q13[SQ014] 14. Sentimentul de nefericire <U+0219>i lipsa de speran<U+021B>a al clientului. |
G07Q13[SQ028] | -3 | G07Q13[SQ028] 28. Autocompasiunea clientului. |
G07Q13[SQ015] | -4 | G07Q13[SQ015] 15. Sentimentul de singuratate <U+0219>i izolare al clientului. |
G07Q13[SQ017] | -4 | G07Q13[SQ017] 17. Rela<U+021B>iile tensionate su conflictuale cu alte persoane (ale clientului). |
<-
order_f2 %>%
scores select(fsc_f2, item_text) %>%
arrange(desc(fsc_f2))
%>% knitr::kable(caption = "Order f2") order_f2
fsc_f2 | item_text | |
---|---|---|
G07Q13[SQ001] | 4 | G07Q13[SQ001] 1. Preocuparea autentica pentru binele clientului. |
G07Q13[SQ002] | 4 | G07Q13[SQ002] 2. Acceptarea clientului ca persoana. |
G07Q13[SQ003] | 3 | G07Q13[SQ003] 3. Respectul reciproc (între terapeut <U+0219>i client). |
G07Q13[SQ004] | 3 | G07Q13[SQ004] 4. Lucrul împreuna pe scopurile agreate mutual. |
G07Q13[SQ005] | 3 | G07Q13[SQ005] 5. Acordul între terapeut <U+0219>i client cu privire la ce este important sa lucreze. |
G07Q13[SQ014] | 2 | G07Q13[SQ014] 14. Sentimentul de nefericire <U+0219>i lipsa de speran<U+021B>a al clientului. |
G07Q13[SQ016] | 2 | G07Q13[SQ016] 16. Capacitatea clientului de a stabili rela<U+021B>ii sanatoase, satisfacatoare. |
G07Q13[SQ026] | 2 | G07Q13[SQ026] 26. Capacitatea de autoreglare emo<U+021B>ionala a clientului. |
G07Q13[SQ028] | 2 | G07Q13[SQ028] 28. Autocompasiunea clientului. |
G07Q13[SQ006] | 1 | G07Q13[SQ006] 6. Acordul între terapeut <U+0219>i client cu privire la pa<U+0219>ii necesari pentru a facilita schimbarile dorite. |
G07Q13[SQ010] | 1 | G07Q13[SQ010] 10. Rezilien<U+021B>a clientului în situa<U+021B>ii de adversitate. |
G07Q13[SQ015] | 1 | G07Q13[SQ015] 15. Sentimentul de singuratate <U+0219>i izolare al clientului. |
G07Q13[SQ021] | 1 | G07Q13[SQ021] 21. Nivelul de con<U+0219>tientizare a clientului asupra propriei persoane / propriilor emo<U+021B>ii. |
G07Q13[SQ025] | 1 | G07Q13[SQ025] 25. Transformarea sensului experien<U+021B>elor clientului. |
G07Q13[SQ007] | 0 | G07Q13[SQ007] 7. În<U+021B>elegerea reciproca a tipurilor de schimbari care pot ajuta clientul. |
G07Q13[SQ008] | 0 | G07Q13[SQ008] 8. Sentimentul de mul<U+021B>umire de sine al clientului. |
G07Q13[SQ009] | 0 | G07Q13[SQ009] 9. Optimismul clientului cu privire la viitor. |
G07Q13[SQ012] | 0 | G07Q13[SQ012] 12. Stresul <U+0219>i dificulta<U+021B>ile emo<U+021B>ionale ale clientului. |
G07Q13[SQ013] | 0 | G07Q13[SQ013] 13. Acuzele somatice <U+0219>i tulburarile de somn ale clientului. |
G07Q13[SQ022] | 0 | G07Q13[SQ022] 22. Capacitatea de exprimare emo<U+021B>ionala a clientului. |
G07Q13[SQ024] | 0 | G07Q13[SQ024] 24. Procesele de gândire disfunc<U+021B>ionala (rumina<U+021B>ie, gândirea excesiva/ overthinking, îngrijorare, autocritica, etc.). |
G07Q13[SQ011] | -1 | G07Q13[SQ011] 11. Capacitatea clientului de a-<U+0219>i atinge scopurile. |
G07Q13[SQ017] | -1 | G07Q13[SQ017] 17. Rela<U+021B>iile tensionate su conflictuale cu alte persoane (ale clientului). |
G07Q13[SQ019] | -1 | G07Q13[SQ019] 19. Sentimentul de auto-eficacitate <U+0219>i încredere în sine al clientului. |
G07Q13[SQ023] | -1 | G07Q13[SQ023] 23. Procesele de evitare ale clientului. |
G07Q13[SQ030] | -1 | G07Q13[SQ030] 30. Experien<U+021B>ele traumatice ale clientului. |
G07Q13[SQ018] | -2 | G07Q13[SQ018] 18. Dificulta<U+021B>ile de adaptare ale clientului în mediile profesionale sau educa<U+021B>ionale. |
G07Q13[SQ027] | -2 | G07Q13[SQ027] 27. Asertivitatea <U+0219>i capacitatea clientului de a pune limite personale. |
G07Q13[SQ029] | -2 | G07Q13[SQ029] 29. Experien<U+021B>ele interpersonale trecute aflate la originea problemelor curente ale clientului. |
G07Q13[SQ035] | -2 | G07Q13[SQ035] 35. Deconstruirea strategiilor sau mecanismelor de evitare <U+0219>i aparare. |
G07Q13[SQ020] | -3 | G07Q13[SQ020] 20. Satisfac<U+021B>ia clientului în activitatea de munca sau înva<U+021B>are. |
G07Q13[SQ031] | -3 | G07Q13[SQ031] 31. Con<U+0219>tientizarea faptului ca manifestari disfunc<U+021B>ionale pot fi generate de mecanisme psihologice adaptive. |
G07Q13[SQ032] | -3 | G07Q13[SQ032] 32. Controlul emo<U+021B>iilor <U+0219>i al gândurilor nedorite. |
G07Q13[SQ033] | -4 | G07Q13[SQ033] 33. Ventilarea sau descarcarea emo<U+021B>ionala. |
G07Q13[SQ034] | -4 | G07Q13[SQ034] 34. Exprimarea aspectelor dificile, cum ar fi secrete sau alte lucruri care nu au mai fost exprimate anterior. |
<-
order_f3 %>%
scores select(fsc_f3, item_text) %>%
arrange(desc(fsc_f3))
%>% knitr::kable(caption = "Order f3") order_f3
fsc_f3 | item_text | |
---|---|---|
G07Q13[SQ001] | 4 | G07Q13[SQ001] 1. Preocuparea autentica pentru binele clientului. |
G07Q13[SQ002] | 4 | G07Q13[SQ002] 2. Acceptarea clientului ca persoana. |
G07Q13[SQ003] | 3 | G07Q13[SQ003] 3. Respectul reciproc (între terapeut <U+0219>i client). |
G07Q13[SQ021] | 3 | G07Q13[SQ021] 21. Nivelul de con<U+0219>tientizare a clientului asupra propriei persoane / propriilor emo<U+021B>ii. |
G07Q13[SQ030] | 3 | G07Q13[SQ030] 30. Experien<U+021B>ele traumatice ale clientului. |
G07Q13[SQ010] | 2 | G07Q13[SQ010] 10. Rezilien<U+021B>a clientului în situa<U+021B>ii de adversitate. |
G07Q13[SQ014] | 2 | G07Q13[SQ014] 14. Sentimentul de nefericire <U+0219>i lipsa de speran<U+021B>a al clientului. |
G07Q13[SQ019] | 2 | G07Q13[SQ019] 19. Sentimentul de auto-eficacitate <U+0219>i încredere în sine al clientului. |
G07Q13[SQ022] | 2 | G07Q13[SQ022] 22. Capacitatea de exprimare emo<U+021B>ionala a clientului. |
G07Q13[SQ013] | 1 | G07Q13[SQ013] 13. Acuzele somatice <U+0219>i tulburarile de somn ale clientului. |
G07Q13[SQ015] | 1 | G07Q13[SQ015] 15. Sentimentul de singuratate <U+0219>i izolare al clientului. |
G07Q13[SQ016] | 1 | G07Q13[SQ016] 16. Capacitatea clientului de a stabili rela<U+021B>ii sanatoase, satisfacatoare. |
G07Q13[SQ027] | 1 | G07Q13[SQ027] 27. Asertivitatea <U+0219>i capacitatea clientului de a pune limite personale. |
G07Q13[SQ029] | 1 | G07Q13[SQ029] 29. Experien<U+021B>ele interpersonale trecute aflate la originea problemelor curente ale clientului. |
G07Q13[SQ008] | 0 | G07Q13[SQ008] 8. Sentimentul de mul<U+021B>umire de sine al clientului. |
G07Q13[SQ011] | 0 | G07Q13[SQ011] 11. Capacitatea clientului de a-<U+0219>i atinge scopurile. |
G07Q13[SQ012] | 0 | G07Q13[SQ012] 12. Stresul <U+0219>i dificulta<U+021B>ile emo<U+021B>ionale ale clientului. |
G07Q13[SQ017] | 0 | G07Q13[SQ017] 17. Rela<U+021B>iile tensionate su conflictuale cu alte persoane (ale clientului). |
G07Q13[SQ026] | 0 | G07Q13[SQ026] 26. Capacitatea de autoreglare emo<U+021B>ionala a clientului. |
G07Q13[SQ031] | 0 | G07Q13[SQ031] 31. Con<U+0219>tientizarea faptului ca manifestari disfunc<U+021B>ionale pot fi generate de mecanisme psihologice adaptive. |
G07Q13[SQ033] | 0 | G07Q13[SQ033] 33. Ventilarea sau descarcarea emo<U+021B>ionala. |
G07Q13[SQ004] | -1 | G07Q13[SQ004] 4. Lucrul împreuna pe scopurile agreate mutual. |
G07Q13[SQ018] | -1 | G07Q13[SQ018] 18. Dificulta<U+021B>ile de adaptare ale clientului în mediile profesionale sau educa<U+021B>ionale. |
G07Q13[SQ025] | -1 | G07Q13[SQ025] 25. Transformarea sensului experien<U+021B>elor clientului. |
G07Q13[SQ032] | -1 | G07Q13[SQ032] 32. Controlul emo<U+021B>iilor <U+0219>i al gândurilor nedorite. |
G07Q13[SQ034] | -1 | G07Q13[SQ034] 34. Exprimarea aspectelor dificile, cum ar fi secrete sau alte lucruri care nu au mai fost exprimate anterior. |
G07Q13[SQ006] | -2 | G07Q13[SQ006] 6. Acordul între terapeut <U+0219>i client cu privire la pa<U+0219>ii necesari pentru a facilita schimbarile dorite. |
G07Q13[SQ009] | -2 | G07Q13[SQ009] 9. Optimismul clientului cu privire la viitor. |
G07Q13[SQ024] | -2 | G07Q13[SQ024] 24. Procesele de gândire disfunc<U+021B>ionala (rumina<U+021B>ie, gândirea excesiva/ overthinking, îngrijorare, autocritica, etc.). |
G07Q13[SQ028] | -2 | G07Q13[SQ028] 28. Autocompasiunea clientului. |
G07Q13[SQ005] | -3 | G07Q13[SQ005] 5. Acordul între terapeut <U+0219>i client cu privire la ce este important sa lucreze. |
G07Q13[SQ023] | -3 | G07Q13[SQ023] 23. Procesele de evitare ale clientului. |
G07Q13[SQ035] | -3 | G07Q13[SQ035] 35. Deconstruirea strategiilor sau mecanismelor de evitare <U+0219>i aparare. |
G07Q13[SQ007] | -4 | G07Q13[SQ007] 7. În<U+021B>elegerea reciproca a tipurilor de schimbari care pot ajuta clientul. |
G07Q13[SQ020] | -4 | G07Q13[SQ020] 20. Satisfac<U+021B>ia clientului în activitatea de munca sau înva<U+021B>are. |
# ----------------------------------------
# Merge flagged/membership back to data
$QSort_mem <- factor(
df_recoded2$flagged %*% (1:ncol(results$flagged))),
(resultslabels = c(NA_character_, colnames(results$flagged))
)# cbind(as.data.frame(results$flagged), df_recoded2$QSort_mem) # test -- all fine
# "G02Q03" = gen
# "G02Q05" = scoala formare
# "G02Q06" = no cursuri formare
# "G03Q08" = tehnici scoala
# "G03Q10" = ani practica
<-
desc_table %>%
df_recoded2 select(G02Q03, G03Q05, G03Q06, G03Q08, G03Q10, QSort_mem) %>%
::tbl_summary()
gtsummary:::print.gtsummary(desc_table, print_engine = "kable") gtsummary
Characteristic | N = 62 |
---|---|
G02Q03 | |
Feminin | 49 (79%) |
Masculin | 13 (21%) |
G03Q05 | |
Cognitiva / comportamentala | 17 (27%) |
Integrativa | 9 (15%) |
Psihodinamica | 11 (18%) |
Umanist experien<U+021B>iala | 25 (40%) |
G03Q06 | |
1 | 36 (58%) |
2 | 15 (24%) |
3 | 5 (8.1%) |
4 | 1 (1.6%) |
5+ | 5 (8.1%) |
G03Q08 | |
cognitiva / comportamentala | 10 (16%) |
eclectica / integrativa | 18 (29%) |
psihodinamica | 13 (21%) |
umanist experien<U+021B>iala | 21 (34%) |
G03Q10 | |
1-2 ani | 5 (8.1%) |
2-3 ani | 6 (9.7%) |
3-5 ani | 6 (9.7%) |
5-10 ani | 16 (26%) |
mai pu<U+021B>in de 1 an | 7 (11%) |
peste 10 ani | 22 (35%) |
QSort_mem | |
flag_f1 | 21 (41%) |
flag_f2 | 16 (31%) |
flag_f3 | 14 (27%) |
ggpiestats(
data = df_recoded2,
x = QSort_mem,
y = G03Q05,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = G03Q05,
y = IRI_EC,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = G03Q05,
y = IRI_PT,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = G03Q05,
y = IRI_F,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = G03Q05,
y = IRI_PD,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_EC,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_PT,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_F,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_PD,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = UT_QE,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = UT_EU,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = UT_PO,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = UT_PS,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = UT_C,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = UT_BI,
type = "np"
)
ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = UT_Total,
type = "np"
)
grouped_ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_EC,
grouping.var = G03Q05,
type = "np"
)
grouped_ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_PT,
grouping.var = G03Q05,
type = "np"
)
grouped_ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_F,
grouping.var = G03Q05,
type = "np"
)
grouped_ggbetweenstats(
data = df_recoded2,
x = QSort_mem,
y = IRI_PD,
grouping.var = G03Q05,
type = "np"
)
R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 8.1 x64 (build 9600)
Matrix products: default
locale:
[1] LC_COLLATE=Romanian_Romania.1252 LC_CTYPE=Romanian_Romania.1252 LC_MONETARY=Romanian_Romania.1252 LC_NUMERIC=C
[5] LC_TIME=Romanian_Romania.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] qmethod_1.8 XML_3.99-0.13 gtsummary_1.7.0 report_0.5.5 scales_1.2.1
[6] ggstatsplot_0.11.0.9000 psych_2.2.9 rio_0.5.29 conflicted_1.2.0 fs_1.5.2
[11] papaja_0.1.1 tinylabels_0.2.3 lubridate_1.9.2 forcats_1.0.0 stringr_1.5.0
[16] dplyr_1.1.0 purrr_1.0.1 readr_2.1.3 tidyr_1.3.0 tibble_3.1.8
[21] ggplot2_3.4.1 tidyverse_2.0.0 pacman_0.5.3
loaded via a namespace (and not attached):
[1] colorspace_2.0-3 ggsignif_0.6.4 rjson_0.2.21 ellipsis_0.3.2 rprojroot_2.0.3 parameters_0.20.1
[7] rstudioapi_0.14 farver_2.1.1 MatrixModels_0.5-1 ggrepel_0.9.3 DT_0.27 bit64_4.0.5
[13] fansi_1.0.3 mvtnorm_1.1-3 mnormt_2.1.1 cachem_1.0.6 knitr_1.41 SuppDists_1.1-9.7
[19] zeallot_0.1.0 jsonlite_1.8.4 gt_0.8.0 Rmpfr_0.9-0 effectsize_0.8.2 shiny_1.7.4
[25] compiler_4.2.2 PMCMRplus_1.9.6 Matrix_1.5-1 fastmap_1.1.0 cli_3.6.0 later_1.3.0
[31] htmltools_0.5.4 tools_4.2.2 gmp_0.6-9 coda_0.19-4 gtable_0.3.1 glue_1.6.2
[37] Rcpp_1.0.10 cellranger_1.1.0 jquerylib_0.1.4 vctrs_0.5.2 nlme_3.1-160 broom.helpers_1.12.0
[43] crosstalk_1.2.0 insight_0.19.0 xfun_0.36 openxlsx_4.2.5.1 timechange_0.2.0 mime_0.12
[49] lifecycle_1.0.3 MASS_7.3-58.1 vroom_1.6.0 BayesFactor_0.9.12-4.4 hms_1.1.2 promises_1.2.0.1
[55] parallel_4.2.2 rematch2_2.1.2 prismatic_1.1.1 yaml_2.3.6 curl_5.0.0 memoise_2.0.1
[61] pbapply_1.7-0 sass_0.4.4 stringi_1.7.12 paletteer_1.5.0 highr_0.10 bayestestR_0.13.0
[67] boot_1.3-28.1 zip_2.2.2 rlang_1.0.6 pkgconfig_2.0.3 commonmark_1.8.1 evaluate_0.20
[73] lattice_0.20-45 labeling_0.4.2 patchwork_1.1.2 htmlwidgets_1.6.1 bit_4.0.5 tidyselect_1.2.0
[79] here_1.0.1 magrittr_2.0.3 R6_2.5.1 multcompView_0.1-8 generics_0.1.3 BWStest_0.2.2
[85] pillar_1.8.1 haven_2.5.1 foreign_0.8-83 withr_2.5.0 datawizard_0.6.5 performance_0.10.2
[91] crayon_1.5.2 utf8_1.2.2 correlation_0.8.3 tzdb_0.3.0 rmarkdown_2.19 kSamples_1.2-9
[97] grid_4.2.2 readxl_1.4.1 data.table_1.14.6 digest_0.6.31 xtable_1.8-4 httpuv_1.6.8
[103] GPArotation_2022.10-2 statsExpressions_1.4.0 munsell_0.5.0 bslib_0.4.2
A work by Claudiu Papasteri