Load data
rawdata <- readr::read_csv("diamonds.csv") # source("../passwords.R") # never post your passwords to Github again!
Processing data
processed_data <- rawdata %>%
filter(carat <= 2.5)
Table of processed data
knitr::kable(
processed_data[1:3, ],
caption = "A knitr kable."
)
0.23 |
Ideal |
E |
SI2 |
61.5 |
55 |
326 |
3.95 |
3.98 |
2.43 |
0.21 |
Premium |
E |
SI1 |
59.8 |
61 |
326 |
3.89 |
3.84 |
2.31 |
0.23 |
Good |
E |
VS1 |
56.9 |
65 |
327 |
4.05 |
4.07 |
2.31 |
Plot of processed data
processed_data %>%
ggplot(aes(carat)) +
geom_freqpoly(binwidth = 0.01)
Session Info
R version 3.5.2 (2018-12-20)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=Romanian_Romania.1250 LC_CTYPE=Romanian_Romania.1250 LC_MONETARY=Romanian_Romania.1250
[4] LC_NUMERIC=C LC_TIME=Romanian_Romania.1250
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] bindrcpp_0.2.2 papaja_0.1.0.9842 psych_1.8.10 forcats_0.3.0 stringr_1.3.1 dplyr_0.7.8 purrr_0.2.5
[8] readr_1.3.0 tidyr_0.8.2 tibble_1.4.2 ggplot2_3.1.0 tidyverse_1.2.1 pacman_0.5.0
loaded via a namespace (and not attached):
[1] tidyselect_0.2.5 xfun_0.4 haven_2.1.0 lattice_0.20-38 colorspace_1.3-2 generics_0.0.2 htmltools_0.3.6
[8] yaml_2.2.0 rlang_0.3.1 pillar_1.3.1 foreign_0.8-71 glue_1.3.0 withr_2.1.2 modelr_0.1.2
[15] readxl_1.1.0 bindr_0.1.1 plyr_1.8.4 munsell_0.5.0 gtable_0.2.0 cellranger_1.1.0 rvest_0.3.2
[22] evaluate_0.12 labeling_0.3 knitr_1.21 parallel_3.5.2 highr_0.7 broom_0.5.1 Rcpp_1.0.0
[29] scales_1.0.0 backports_1.1.3 jsonlite_1.6 mnormt_1.5-5 digest_0.6.18 hms_0.4.2 stringi_1.2.4
[36] grid_3.5.2 cli_1.0.1 tools_3.5.2 magrittr_1.5 lazyeval_0.2.1 crayon_1.3.4 pkgconfig_2.0.2
[43] xml2_1.2.0 lubridate_1.7.4 rmarkdown_1.11 assertthat_0.2.0 httr_1.4.0 rstudioapi_0.8 R6_2.3.0
[50] nlme_3.1-137 compiler_3.5.2
A work by Claudiu Papasteri
claudiu.papasteri@gmail.com
LS0tDQp0aXRsZTogIjxicj4gUiBOb3RlYm9vayBUZW1wbGF0ZSIgDQpzdWJ0aXRsZTogIlJNYXJkb3duIFJlcG9ydCINCmF1dGhvcjogIjxicj4gQ2xhdWRpdSBQYXBhc3RlcmkiDQpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclZCAlbSAlWScpYCINCm91dHB1dDogDQogICAgaHRtbF9ub3RlYm9vazoNCiAgICAgICAgICAgIGNvZGVfZm9sZGluZzogaGlkZQ0KICAgICAgICAgICAgdG9jOiB0cnVlDQogICAgICAgICAgICB0b2NfZGVwdGg6IDINCiAgICAgICAgICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQ0KICAgICAgICAgICAgdGhlbWU6IHNwYWNlbGFiDQogICAgICAgICAgICBoaWdobGlnaHQ6IHRhbmdvDQogICAgICAgICAgICBmb250LWZhbWlseTogQXJpYWwNCiAgICBwZGZfZG9jdW1lbnQ6IA0KICAgICAgICAgICAgdG9jOiB0cnVlDQogICAgICAgICAgICB0b2NfZGVwdGg6IDINCiAgICAgICAgICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQ0KICAgICAgICAgICAgIyBmb250c2l6ZTogMTFwdA0KICAgICAgICAgICAgIyBnZW9tZXRyeTogbWFyZ2luPTFpbg0KICAgICAgICAgICAgIyBmaWdfd2lkdGg6IDcNCiAgICAgICAgICAgICMgZmlnX2hlaWdodDogNg0KICAgICAgICAgICAgIyBmaWdfY2FwdGlvbjogdHJ1ZQ0KICAgICMgZ2l0aHViX2RvY3VtZW50OiANCiAgICAgICAgICAgICMgdG9jOiB0cnVlDQogICAgICAgICAgICAjIHRvY19kZXB0aDogMg0KICAgICAgICAgICAgIyBodG1sX3ByZXZpZXc6IGZhbHNlDQogICAgICAgICAgICAjIGZpZ193aWR0aDogNQ0KICAgICAgICAgICAgIyBmaWdfaGVpZ2h0OiA1DQogICAgICAgICAgICAjIGRldjoganBlZw0KLS0tDQoNCg0KPCEtLSBTZXR1cCAtLT4NCg0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZSA9IEZBTFNFfQ0KIyBraW50ciBvcHRpb25zDQprbml0cjo6b3B0c19jaHVuayRzZXQoDQogIGZpZy53aWR0aCA9IDUsIGZpZy5hc3AgPSAxLzMsIA0KICBjb21tZW50ID0gIiMiLA0KICBjb2xsYXBzZSA9IFRSVUUsDQogIGVjaG8gPSBUUlVFLCB3YXJuaW5nID0gVFJVRSwgbWVzc2FnZSA9IFRSVUUsIGNhY2hlID0gVFJVRSAgICAgICAjIGVjaG8gPSBGYWxzZSBmb3IgZ2l0aHViX2RvY3VtZW50LCBidXQgd2lsbCBiZSBmb2xkZWQgaW4gaHRtbF9ub3RlYm9vaw0KKQ0KDQojIEdlbmVyYWwgUiBvcHRpb25zIGFuZCBpbmZvDQpzZXQuc2VlZCgxMTEpICAgICAgICAgICAgICAgIyBpbiBjYXNlIHdlIHVzZSByYW5kb21pemVkIHByb2NlZHVyZXMgICAgICAgDQpvcHRpb25zKHNjaXBlbiA9IDk5OSkgICAgICAgIyBwb3NpdGl2ZSB2YWx1ZXMgYmlhcyB0b3dhcmRzIGZpeGVkIGFuZCBuZWdhdGl2ZSB0b3dhcmRzIHNjaWVudGlmaWMgbm90YXRpb24NCg0KIyBMb2FkIHBhY2thZ2VzDQppZiAoIXJlcXVpcmUoInBhY21hbiIpKSBpbnN0YWxsLnBhY2thZ2VzKCJwYWNtYW4iKQ0KcGFja2FnZXMgPC0gYygNCiAgInRpZHl2ZXJzZSIsICAgICAgIyBiZXN0IHRoaW5nIHRoYXQgaGFwcGVuZCB0byBtZQ0KICAicHN5Y2giLCAgICAgICAgICAjIGdlbmVyYWwgcHVycG9zZSB0b29sYm94IGZvciBwZXJzb25hbGl0eSwgcHN5Y2hvbWV0cmljIHRoZW9yeSBhbmQgZXhwZXJpbWVudGFsIHBzeWNob2xvZ3kNCiAgInBhcGFqYSIgICAgICAgICAgIyBmb3IgQVBBIHN0eWxlDQogICMgLCAuLi4NCikNCmlmICghcmVxdWlyZSgicGFjbWFuIikpIGluc3RhbGwucGFja2FnZXMoInBhY21hbiIpDQpwYWNtYW46OnBfbG9hZChjaGFyID0gcGFja2FnZXMpDQoNCiMgVGhlbWVzIGZvciBnZ3Bsb3QyIHBsb3RpbmcgKGhlcmUgdXNlZCBBUEEgc3R5bGUpDQp0aGVtZV9zZXQodGhlbWVfYXBhKCkpDQpgYGANCg0KDQo8IS0tIFJlcG9ydCAtLT4NCg0KDQojIExvYWQgZGF0YQ0KDQpgYGB7ciByYXdfZGF0YSwgcmVzdWx0cyA9ICdoaWRlJywgY2FjaGUuZXh0cmEgPSBmaWxlLmluZm8oImRpYW1vbmRzLmNzdiIpfQ0KcmF3ZGF0YSA8LSByZWFkcjo6cmVhZF9jc3YoImRpYW1vbmRzLmNzdiIpICAgIyBzb3VyY2UoIi4uL3Bhc3N3b3Jkcy5SIikgIyBuZXZlciBwb3N0IHlvdXIgcGFzc3dvcmRzIHRvIEdpdGh1YiBhZ2FpbiENCmBgYA0KDQojIFByb2Nlc3NpbmcgZGF0YQ0KDQpgYGB7ciBwcm9jZXNzZWRfZGF0YSwgY2FjaGUgPSBUUlVFLCBkZXBlbmRzb24gPSAicmF3X2RhdGEifQ0KcHJvY2Vzc2VkX2RhdGEgPC0gcmF3ZGF0YSAlPiUgDQogIGZpbHRlcihjYXJhdCA8PSAyLjUpDQpgYGANCg0KIyMgVGFibGUgb2YgcHJvY2Vzc2VkIGRhdGENCg0KYGBge3IgcHJpbnRfcHJvY2Vzc2VkX2RhdGF9DQprbml0cjo6a2FibGUoDQogIHByb2Nlc3NlZF9kYXRhWzE6MywgXSwgDQogIGNhcHRpb24gPSAiQSBrbml0ciBrYWJsZS4iDQopDQpgYGANCg0KIyMgUGxvdCBvZiBwcm9jZXNzZWQgZGF0YQ0KDQpgYGB7ciBwbG90X3Byb2Nlc3NlZF9kYXRhfQ0KcHJvY2Vzc2VkX2RhdGEgJT4lDQogIGdncGxvdChhZXMoY2FyYXQpKSArIA0KICAgIGdlb21fZnJlcXBvbHkoYmlud2lkdGggPSAwLjAxKQ0KYGBgDQoNCg0KPCEtLSBTZXNzaW9uIEluZm8gYW5kIExpY2Vuc2UgLS0+DQoNCjxicj4NCg0KIyMgU2Vzc2lvbiBJbmZvDQpgYGB7ciBzZXNzaW9uX2luZm8sIGVjaG8gPSBGQUxTRSwgcmVzdWx0cyA9ICdtYXJrdXAnfQ0Kc2Vzc2lvbkluZm8oKSAgICANCmBgYA0KDQo8IS0tIEZvb3RlciAtLT4NCiZuYnNwOw0KPGhyIC8+DQo8cCBzdHlsZT0idGV4dC1hbGlnbjogY2VudGVyOyI+QSB3b3JrIGJ5IDxhIGhyZWY9Imh0dHBzOi8vZ2l0aHViLmNvbS9DbGF1ZGl1UGFwYXN0ZXJpLyI+Q2xhdWRpdSBQYXBhc3Rlcmk8L2E+PC9wPg0KPHAgc3R5bGU9InRleHQtYWxpZ246IGNlbnRlcjsiPjxzcGFuIHN0eWxlPSJjb2xvcjogIzgwODA4MDsiPjxlbT5jbGF1ZGl1LnBhcGFzdGVyaUBnbWFpbC5jb208L2VtPjwvc3Bhbj48L3A+DQombmJzcDsNCg==